
Using 
Machine 
Learning to 
Identify 
Landslides 

Nathalie Redick
McGill University



A Quick 
Introduction

• I am a 4th year undergraduate at McGill 
University 

• Majoring in computer science and 
minoring in earth & planetary sciences  

• Primarily interested in how machine 
learning can be applied to geoscientific 
problems 



Background
What data & what model are we using?



Objectives

• Automate routines for downloading and 
processing publicly available input data from 
APIs (such as DEMs)

• Create a modular, scalable machine learning 
model based on the downloaded input data for 
detecting landslides 



Workflow



Data
• To train a model, we need 

images (image tiles) and truth 
values for the pixels in those 
tiles (masks/segmentation 
maps) 

• The Contra Costa Country 
Landslide Inventory serve as 
our masks: polygons of 
landslide scarps and deposits

• The features are derived from 
a ~10m resolution DEM, 
retrieved from the USGS 3D 
Elevation Program database Research Area Extent

https://www.usgs.gov/3d-elevation-program


Training 
Images

• Our training images are a composite raster created from 
DEM derivatives of the Contra Costa quadrangle 

• Each layer becomes a channel in the image, like RGB
channels

Elevation Slope Curvature



Feature Masks

• The masks are 
produced from the 
landslide scarp and 
deposit rasters

• The polygons are 
rasterized to the 
same resolution as 
the composite image 
(approximately 10m 
per pixel)  



U-Net Model

• A U-Net is a convolutional neural network (CNN) designed 
for semantic image segmentation, named for its “U” shape

• It makes predictions on a pixel-wise basis

• The model has two paths: down-sampling (left side) and 
up-sampling (right side)
• Down-sampling extracts image features
• Up-sampling localizes objects (landslides) 

• This kind of neural network is well-suited to our task 
because it can preserve spatial relationships in the data

• Neural networks can perform well when you have limited 
data

Source: Li, Johnson & Yeung (2017)

https://www.researchgate.net/figure/Comparison-of-semantic-segmentation-classification-and-localization-object-detection_fig1_334363440


Data Preprocessing
How are we processing the data & why?



Rasterization
• After the DEM is downloaded 

from the 3DEP server, we 
derive slope & curvature 
using the richdem library

• These 3 features are 
combined into a composite 
raster 
• Note that the values have been 

normalized to [0, 1] for better 
model performance

• The scarp & deposit polygons 
are rasterized into binary 
masks



Tiling the images

1408 x 1792 x 
31408 x 1792 x 

1

Layer the input 
features

Tile the image into 
smaller images

616 x 64 x 64 x 3

• The images are tiled to 64 by 64 pixels 
• These are our training images (616 tiles) & aligned 

feature masks (616 scarp masks & 616 deposit 
masks)

Example training images & masks



Data Augmentation

• 616 tiles is not a lot of data for the model to be able to learn patterns

• We resolve this issue by combining the original 616 tiles with augmented 
tiles

• The augmented tiles are created using the imgaug library
• 50% chance of an image being flipped horizontally 

• 50% chance of an image being flipped vertically

• This allows us to double the size of the training dataset (1232 tiles)

• It allows helps the model generalize better when it sees new data 



Training the U-Net Model
Defining & training a model to fit the data



Building the Model 
Architecture
• Features are extracted from the tiles via down-

sampling in the left half of the “U”’

• Captures context

• Composed of a stack of convolution and max 
pooling layers 

• Predicted regions (landslide/non-landslide) are 
localized in the right half of the “U”

• Composed of transposed convolutional layer(s)

• U-Net is a kind of fully-connected neural network

Source: University of Freiburg

https://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a/


Defining Hyperparameters 

• Hyperparameters determine the parameters that the model learns by 
controlling the learning process 

• Some of the hyperparameters used to tune this model include input tile 
size, batch size, optimization function, loss function, activation function, and 
train/valid/test split
• Optimization function (Adam) guides the model towards a lower loss, where loss is

calculated using binary cross-entropy 
• Activation function (sigmoid) defines the output segmentation mask 
• These particular functions are best geared toward a neural network training for a 

binary semantic segmentation problem 



Training the Model

• Two models are trained using the U-Net 
architecture
• One to isolate landslide scarps & one 

to isolate landslide deposits 

• The model trains over iterations called 
epochs 

• It continues to train until the loss has 
stopped improving for two consecutive 
epochs (early stopping) 

• Accuracy and loss are monitored over the 
course of training
• Training loss & validation loss per epoch 

Epoch
A

cc
ur

ac
y

Lo
ss



Side note 

• The training metrics are 
uploaded to an interactive 
Tensorboard that allows them 
to be viewed publicly 

• Also able to see details about 
training times and specific 
performance metric values 
per epoch 

https://tensorboard.dev/experiment/1Wfk0uKbT0OTM34i7SzliA/


Results
How do you determine model performance & how well did our model do?



Performance Metrics 

• At this point in time, we are only looking at two performance 
metrics: loss and accuracy 

• Loss is the difference between the expected outcome and the 
model’s predicted outcome

• Accuracy is the number of correctly predicted data points out 
of all of the data points 

• Both metrics are given as values in the range [0, 1]

• In short, accuracy should approach to 1 and loss should 
approach 0 

• We look at the test loss and accuracy values since the model has 
never seen those before 

• These test values are calculated from the trained model on a 
test set 

Model Test 
Loss

Test 
Accuracy

Deposits 
U-Net

0.410 0.861

Scarps 
U-Net

0.198 0.953



Visualizing the 
Results

• We can see that the 
predicted masks look more 
like the composite than the 
true masks 

• Despite the high accuracy 
values, the model is not 
producing great outputs

• This is a common result of 
having too little data to train 
with



Next Steps
Fixing current issues & thinking about the future



Remedying 
Overfitting

• The best (and easiest) way to improve a model that is 
overfitting is to acquire more training data 

• Add more regularization to the model 
• Regularization techniques help the model stay in line 
• For our purposes, adding some dropout layers may help 

the model generalize better and prevent it from memorizing 
the input composite 

• Use more performance metrics to better understand how the 
model is learning (and where it may be going wrong) 
• Precision, recall & IoU Source: Wikipedia

https://en.wikipedia.org/wiki/Jaccard_index


Taking it a Step Further

• It would be interesting to see how this technique compares to 
current techniques, such as spectral methods 

• Incorporate input features such as soil, lithology, climate, and 
vegetation
• Use backpropagation techniques to understand what the model considers to 

be most important when trying to find a landslide scarp/deposit 



Significance

• While the output masks still leave something to be desired, the 
automated workflow for downloading input data, processing it, and 
training a model 
• The model isn’t landslide-specific!

• The workflow is portable and scalable 



Thank you! 
Special thanks to Drs. Jamie Kirkpatrick, Veronica Prush, Matthew Tarling, & Jin Guo for their guidance & patience.


