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BACKGROUND



Why Machine Learning?
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• What is machine learning (ML)?
• Very simply, it’s type of statistical analysis that 

“trains” on data in a way that imitates the way 
that humans learn

• Machine learning can support research by speeding up 
complex calculations, providing new insights, 
automating tedious tasks, etc.

• However, knowing how and when to use machine 
learning can be difficult for researchers outside of 
computer science

• Most large ML libraries (Tensorflow, Keras, PyTorch) 
either do not have any functionality for dealing with 
geospatial data, or very little (with poor documentation)
• This means writing a lot of custom functions and 

extra data cleaning 



Objective
• Design an end-to-end workflow that 

handles everything from data 
preprocessing to training a model, 
while allowing the user to choose 
parameters using buttons & 
dropdown menus, etc. 

• A step-by-step guide explaining how 
& why to adjust the parameters will 
be provided alongside the code 



Sample Applications

• Automatically identifying hurricanes in satellite imagery 

• Determining crop types 

• Mapping roads

• Finding fault scarps

• …
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HOW DOES IT WORK?



The Workflow
• The code is written in Python in a Jupyter Notebook 

(code cells that can be run individually, similar to using 
%% for sections in MATLAB) 
• Outputs of each cell are visible beneath the cell 

Add data

Preprocess data

Augment data

Define a ML model

Train the model

Visualize & Analyze 
Results

This is what it looks like!



The Model: UNet
• The UNet model is a convolutional 

neural network (CNN) designed for 
semantic image segmentation, named 
for its “U” shape 

• It makes predictions on a pixel-wise 
basis 

• The model has two paths: down-
sampling (left side) and up-sampling 
(right side) 
• Down-sampling extracts image 

features 
• Up-sampling localizes objects

• This kind of neural network is well-
suited to geospatial analysis because 
it can preserve spatial relationships in 
the data 

Ronneberger et al. (2015)

Shi et al. (2021)



A CASE STUDY
Identifying Landslides in Brazil



Area of 
Interest
• The red polygons outline 

landslide scars (masks)

• The blue polygon defines the
area the model will learn
from (bounds)

• The bounds are 
automatically determined by 
the workflow as the 
maximum convex polygon 
around the masks 



Input Data

• 5m resolution digital elevation model 
(DEM)

• RapidEye hyperspectral data (5 bands)
• Red, Green, Blue, Red Edge and 

Near Infrared

Hyperspectral

DEM



Stacking & Tiling 
the Data
• To format the data to be used in the 

model, all of the bands from each of 
the input data features needs to be 
stacked (composite raster)
• This way, the model can learn 

from all of the data inputs

• Then, the resulting image needs to 
be tiled into smaller images (tiles)

The tiles of the bounds 



Results
• While final testing with this dataset has not been completed yet, the results of the model 

will resemble this figure 

• This figure is taken from Xu et al. (2022) who used a similar method to produce predicted 
masks of the landslides 
• We aim to benchmark our results against this dataset and others



Next Steps
• Finalize model parameterization and architecture 

• Use an updated architecture that can process data with a large class imbalance and 
few training samples 

• Benchmark results on existing datasets (Brazilian landslide data from Xu et al., etc.) 

• Find some beta testers!
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